On Mitchell's embedding theorem for a quasi-schemoid
نویسندگان
چکیده
منابع مشابه
A Note on Dilworth's Embedding Theorem
The dimension of a poset X is the smallest positive integer t for which there exists an embedding of X in the cartesian product of t chains. R. P. Dilworth proved that the dimension of a distributive lattice v L = 2_ is the width of X. In this paper we derive an analogous result for embedding distributive lattices in the cartesian product of chains of bounded length. We prove that for each k > ...
متن کاملA subgaussian embedding theorem
We prove a subgaussian extension of a Gaussian result on embedding subsets of a Euclidean space into normed spaces. Using the concentration of a random subgaussian vector around its mean we obtain an isomorphic (rather than almost isometric) result, under an additional cotype assumption on the normed space considered.
متن کاملA Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
A Quasi-isometric Embedding Algorithm
The Whitney embedding theorem gives an upper bound on the smallest embedding dimension of a manifold. If a data set lies on a manifold, a random projection into this reduced dimension will retain the manifold structure. Here we present an algorithm to find a projection that distorts the data as little as possible.
متن کاملA Quasi-invariance Theorem for Measures on Banach Spaces
We show that for a measure -y on a Banach space directional different ¡ability implies quasi-translation invariance. This result is shown to imply the Cameron-Martin theorem. A second application is given in which 7 is the image of a Gaussian measure under a suitably regular map.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2016
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2016.03.019